The Essential CNC Cost Reduction Checklist

15 practical design tips to minimize the cost of your CNC machined parts

1. ADD LARGE FILLETS TO ALL INTERNAL VERTICAL EDGES

Add a radius > $1/3 \times$ the depth of the cavity - the larger the better

Use the same radius in all internal vertical edges

On cavity floors, add a small fillet (0.5 or 1 mm radius) or leave it sharp

2. LIMIT THE DEPTH OF ALL CAVITIES

Recommended max. cavity depth: 4 × their width

For deeper cavities, use a stair-step design:

3. INCREASE THE THICKNESS OF THIN WALLS

For metal parts: minimum wall thickness > 0.8 mm For plastic parts: minimum wall thickness > 1.5 mm The thicker a section the better the achievable accuracy

4. LIMIT THE LENGTH OF THREADS

Recommended max. thread length: 3 × the nominal diameter

For threads in blind holes: add a min. unthreaded length of $1.5 \times$ the nominal diameter at the bottom

5. DESIGN HOLES WITH STANDARD SIZE AND LIMIT THEIR LENGTH

For metric, specify a diameter in increments of:

- 0.1 mm up to ø10 mm
- 0.5 mm above ø10 mm

For inches, use conventional fractions of an inch or refer to a fractional-inch <u>drill bit sizes table</u>

Recommended max. hole depth: 4 × their diameter

Recommended min. hole diameter: 1 mm (3/64")

6. SPECIFY TOLERANCES ONLY WHERE NECESSARY

DO NOT OVER-TOLERANCE

Use a single datum as a reference for all dimensions (for example, the cross section of two edges)

If not defined, the standard tolerance is \pm 0.125 mm

7. MINIMIZE THE NUMBER OF MACHINE SETUPS

Design parts that can be machined in only one setup on a 3-axis CNC milling machine or a CNC lathe

For complex parts, consider separating the geometry into multiple components that can be assembled later

8. AVOID SMALL FEATURES WITH HIGH ASPECT RATIO

Recommended max. aspect ratio: 4 × width-to-height

To improve stiffness of small features, add bracing support or connect them to a thicker section

9. REMOVE ALL TEXT & LETTERING

Remove all text and lettering from your CNC machined parts

If text is needed, prefer engraved over embossed letters and use a font size of at least 20-points

Consider secondary operations instead for adding text, like silk screening

10. CONSIDER THE MACHINABILITY OF THE MATERIAL

For 100+ parts, select an easy-to-machine material The easiest to machine metals: Brass, Aluminum alloys

The easiest to machine plastics: POM (Delrin), ABS

Metals

11. CONSIDER THE COST OF THE BULK MATERIAL

Each \$ in the reference table (left) represents roughly a 25% price increase in material cost

12. AVOID (MULTIPLE) SURFACE FINISHES

For the lowest cost possible, select the "as-machined" surface finish

Only request multiple surface finishes on the same part when absolutely necessary

Machining cost comparison

13. DESIGN PARTS WITH AXIAL SYMMETRY

Parts machined on a lathe or a mill-turning centerare more economical than parts machined on a 3-axis or 5-axis CNC milling machine

14. THINK BLANK SIZE

Design parts with bounding dimensions 3 mm smaller than a standard blank size

15. TAKE ADVANTAGE OF ECONOMIES OF SCALE

Larger volumes almost completely eliminate the effect of startup costs on the unit price

Increasing the quantity from 1 to 5 can decrease the unit price by more than 50%